Duyurular
27.10.2007 yılında kurduğumuz webcanavari.net Bugün itibariyle 12. yaşına girmiş bulunmaktadır. Bu uzun süre zarfında desteklerini esirgemeyen eski / yeni ve mevcutta bulunan yönetim kadromuza, saygıdeğer üyelerimize teşekkür ederiz.

0 Üye ve 1 Ziyaretçi Konuyu İncelemekte. Aşağı İn :)
Sayfa 1
Konu: Mutlak Değer  (Okunma Sayısı: 927 Kere Okundu.)
« : Haziran 28, 2008, 01:38:53 ÖS »

BbuSHhHeE
*
Üye No : 1446
Yaş : 29
Nerden : İstanbul
Cinsiyet : Bayan
Konu Sayısı : 130
Mesaj Sayısı : 4.553
Karizma = 12372


Tanım sayı doğrusu üzerinde x sayısının sıfıra olan uzaklığına x in mutlak değeri denir ve │x│ ile gösterilir.



x , R nin elemanıdır ve
│x│ ={x, x > 0 ise
{-x,x <0> 0 ise
{-f(x),f(x)< 0 ise

Örnek: x =-3 için │x-5│ - │x+2│ ifadesinin eşiti kaçtır?

Çözüm: │-3-5│ - │-3+2 │ = 8-1=7

Örnek: a<b<0olduğuna göre,
│a+b│ - │a-b │ ifadesinin eşiti nedir?

Çözüm: │a+b│ - │a-b│ = -(a+b) -[ -(a-b) ]
=-a-b+a-b
=-2b


ÖZELLİKLERİ

a,b elemandır R için
1) │a│≥ 0 dır
2) │a │ = │ -a│
3) - │ a│≤a ≤│a│
4) │a.b│ = │a│.│b │
5) b≪ 0 için │a/b │= │a│ / │b │
6) │IaI-IbI│≤│a+b│ <9474> 0,x elemanıdır R ve │x│< a ise -a <x <a>0,x elemanıdır R,│x│≥ a ise x≥ a veya x ≤ -a dır.
10)I-aI=IaI, Ia-bI=Ib-aI
11)I f(x) I = a ise f(x )= a veya f(x) = -a
12)I f(x) I < a ise -a< f(x) <a> a ise f(x) > a U -f(x) > a

İSPATLAR

Öz.1)a = 0 ise IaI = I0I = 0
a > 0 ise IaI = a >0
a <0>0 dır.
O halde IaI > 0 dır.
Öz.2)a ve -a sayılarının 0 dan uzaklıkları eşit olduğundan IaI=I-aI dır.
Öz.6) a elemanıdır R için -IaI ≤ a ≤ IaI
b elemanıdır R için -IbI ≤ b≤ IbI
+
-IaI-IbI≤a+b≤IaI+IbI
O halde Ia+bI < IaI+IbI dir.
Öz.7) a,b elemanıdır R için Ia.bI=IaI.IbI idi.
Ia nI=Ia.a.a...aI=IaI.IaI.IaI...IaI=IaIn dir.
(n tane) ( n tane )
Öz.3)a sayısı için a<0>0 durumlarından biri vardır.
a)a <0> 0 olduğundan -IaI < 0 dır.
-IaI= a <0 < IaI ise -IaI < a < IaI dır.
b)a=0 ise IaI = I0I = 0 ve -Ia I= 0 olacağından –IaI < a <IaI> 0 ise IaI = a ve -IaI < 0 dır.
-IaI≤ 0≤ IaI = a ise -IaI < a < IaI dır.

MUTLAK DEĞERLİ DENKLEMLER
Soru: I3x-7I = 5 denklemini çözünüz.
Çözüm:I3x-7I = 5 ise; 3x-7 = 5 veya 3x-7 = -5 olur.
1- 3x-7 = 5 2- 3x-7=-5
3x = 12 3x = 2
x = 4 x = 2/3
Ç={4,2/3}

Soru:Ix-7I = 7-x eşitliğini sağlayan kaç tane doğal sayı vardır?
Çözüm: Ix-7I = 7-x ise
x-7 < 0 ise x < 7olup x doğal sayıları 0,1,2,3,4,5,6,7 dir.
O halde 8 tane doğal sayı vardır.
Soru: = 2 denkleminin çözüm kümesi nedir ?

Çözüm: = 2

5-2x/3=2 veya 5-2x/3= -2
5-2x = 6 veya 5-2x = -6
x = -1/2 veya x = 11/2
Ç ={-1/2,11/2}


Soru:I 4+I2x-3I I = 5 denklemini sağlayan x reel sayılarının toplamı nedir?
Çözüm: I 4+I2x-3I I = 5

4+I2x-3I = 5 veya 4+I2x-3I = -5
I2x-3I = 1 veya I2x-3I = -9

2x-3 = 1 veya 2x-3 = -1 Çözüm

x = 2 x = 1



O halde x+x = 2+1 = 3 olur.
Uyarı:Hiçbir reel sayının mutlak değeri negatif olamayacağından, denklemin çözüm kümesi boş küme () olur.

MUTLAK DEĞERLİ EŞİTSİZLİKLER


Soru: Ix-7I < 3 eşitsizliğinin çözüm kümesini bulunuz.

Çözüm: Ix-7I < 3 = -3 < x-7 < 3 = -3+7 < x < 3+7
=4<x<10> 2 eşitsizliğini çözünüz.
Çözüm:I 3x+2I+9 > 2 = I 3x+2I > -7
***Bu eşitsizlik x in her değeri için sağlanır.Bu nedenle; Çözüm kümesi R dir.


Soru: I Ix-5I-2 I < 3 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm:I Ix-5I-2 I < 3 = -3 < Ix-5I -2 < 3
= -1 < Ix-5I <5>-1 eşitsizliği daima doğrudur.
Ix-5I < 5 = -5 < x-5 < 5
= 0 < x < 10
Bu aradaki tamsayılar 1,2,3,4,5,6,7,8,9 olup 9 tamsayı vardır.




Soru: I 2x-7 I < 2 eşitsizliğini sağlayan kaç tane tamsayı vardır?

Çözüm:I 2x-7 I < 2 = -2 < 2x-7 < 2
= -2+7 < 2x < 2+7
= 5 < 2x < 9
= 5/2 < x <9> -8 denkleminin çözüm kümesini bulunuz.
Çözüm: x elemanıdır R için I 3x+1 I > 0 olduğundan
I 3x+1 I > -8 eşitsizliği daima doğrudur. Buna göre denklemin çözüm kümesi Reel sayılar kümesidir.

Soru: I 3-3x I < 9 eşitsizliğinin R deki çözüm kümesi nedir?

a) 0<x<2 b) -2<x<4 c) -1<x<0 d) 0<x<2 e) 2<x<4
Çözüm: I 3-3x I<9 = -9 < 3-3x < 9
= -9+3 < 3x < 9+3
= -6 < 3x < 12
= -6/3 < x < 12/3
= -2 < x < 4 ( Cevap B dir.)

Soru: 1 < Ix-2I < 3 eşitsizliğini sağlayan kaç tane tamsayı vardır?
Çözüm: 1 < Ix-2I < 3 = 1 < x-2 < 3
= 1+2 < x < 3+2
= 3 < x <5> -2<x<2> x > 2 veya x <2> x-1=3 veya x - 1 = -3
x = 4 veya x = -2 dir.
Soru 6: a<b<0<c> x - 5 = 3 veya x -5 = -3 tür.
x = 8 veya x = 2
x = 8 veya x =- 8 veya
x = 2 veya x =- 2 dir.
Ç.K. = {-8, -2, 2, 8} dir.
Soru 8: ||x-l| + 4| = 6=>x-1 + 4 = 6 veya
x-1 + 4 = -6 lx-1l = 2 veya lx-1l = -10 olur.
x-1 = - 10 olamayacağından kök yoktur.
x-1 = 2 ise x - 1 = 2 veya x - 1 = -2 x = 3 veya x = -1 dir.
Ç.K = {-1,3}

Soru 9: I 3x-1 I+5 = 0 denkleminin çözüm kümesi nedir?
Çözüm: I 3x-1 I+5 = 0 ise I 3x-1 I = -5 olur.
*** a elemanıdır R için IaI > 0 dır.
Bu nedenle sorunun çözüm kümesi O dir.
Soru 10: I Ix-4I -5 I = 10 denklemini sağlayan x değerlerini bulunuz.
Çözüm: I Ix-4I –5 I = 10

Ix-4I-5 =10 veya Ix-4I-5 = -10
Ix-4I = 5 veya Ix-4I = -5
Ç = {O}
x-4 = 15 veya x-4 = -15 x = 19 veya x = -14

Soru11: I Ix-1I+5 I = 8 denkleminin kökleri toplamı kaçtır?
a) -2 b) 0 c) 2 d) 4 e)14

Çözüm: I Ix-1I+5 I = 8

I Ix-1I+5 I = 8 veya I Ix-1I+5 = -8
Ix-1I = 3 veya Ix-1I = -13
Ç = {O}
x-1 = 3 veya x-1 = -3
x = 4 veya x = -2
x+x = 4+(-2) = 2 ( Cevap C dir.)

Soru 12: I Ix-2I-3 I = 7 denkleminin kökleri toplamı kaçtır?
a) 2 b) 4 c) 8 d) 10 e) 12

Çözüm: I Ix-2I-3 I = 7

Ix-2I-3 = 7 veya Ix-2I-3 = -7
Ix-2I = 10 veya Ix-2I = -4
Ç = {O}
x-2 = 10 veya x-2 = -10
x = 12 veya x = -8
x+x = 12-(- = 4 ( Cevap B dir.)

Soru 13: I 7-(3-I-5I) I işleminin sonucu nedir?
A) 4 B) 5 C) 6 D) 7 E) 9

Çözüm:
I 7-(3-I-5I) I = I 7-[3- -(-5)] I

= I 7-[3-5] I
= I 7-(-2) I
= I 7+2 I
= I 9 I = 9

Soru 14: I Ix-2I-5 I = 1 denklemini sağlayan x tam sayıları nelerdir?
a) 3,6,-3,-6 b) 4,8,-3,-8 c) 7,9,5 d) 8,-4,6,-2 e) 2,-2

Çözüm: I Ix-2I-5 I

Ix-2I-5 = 1 veya Ix-2I-5 = -1
Ix-2I = 6 veya Ix-2I = 4
x-2 = 6 veya x-2 = -6 x-2 = 4 veya x-2 = -4
x = 8 x = -4 x = 6 x = -2


Soru 15: Ix+2I < 4 eşitsizliğini sağlayan kaç tane tamsayı vardır?
a) 13 b) 9 c) 8 d) 7 e) 6 (ÖSS 1999)
Çözüm:
Ix+2I < 4 = -4 < x + 2 <4
= -6 < x < 2
Eşitsizliği oluşturan tamsayılar –6,-5,-4,-3,-2,-1,0,1,2 dir. ( Cevap A dır.)

Soru 16: IxI <6> x = 2y- 2 dir.
x <6> 2y - 2 6 => -6  2y - 2 < 6 dır.
Buradan, -4 < 2y <8> -2 < y < 4 bulunur.
Bu koşulu sağlayan y tamsayıları -2, -1, 0, 1, 2, 3, 4 olup 7 tanedir.
Cevap: A'dır.

Soru 19:x+24 eşitsizliğini sağlayan kaç tane tamsayı vardır?
A) 13 B) 9 C) 8 D) 7 E) 6 (1999-ÖSS)

ÇÖZÜM
x+24 ise < 4 ise -4 < x + 2 < 4
-4-2<x+2-2<4-2
-6 < x < 2
x = -6, -5, -4, -3, -2, -1, O, 1, 2 olup 9 tane tamsayı değeri vardır.
Cevap: B'dir.


Soru 20: x < 0 olmak üzere x-|x-8| - 8 ifadesi aşağıªdakilerden hangisine eşittir?
A)16 B)-2x C)-4x D)-2x+16 E)-4x+16 (1999-ÖSS)

ÇÖZÜM
x-|x-8| - 8 = ?
x-8| = -(x- = -x+8
(-)
= x-(-x+ - 8 |2x-8|-8
(-)
= - (2x - - 8 = -2x + 8 - 8 = -2x
Cevap: B'dir.

Soru22: |x-4| + |x| = 8 denklemini sağlayan x değerleªrinin toplamı kaçtır?
A) 2 B) 4 C) 5 D) 6 E) 10 (2001-ÖSS)

ÇÖZÜM
Mutlak değerin içini 0 yapan değerler x = 4 ve x = 0 dır. x <0> x = - 2 dir.
0 < x <4> 4 için, x - 4 + x = 8 olur.
2x = 12 => x = 6 dır.
x değerleri toplamı -2 + 6 = 4 olur.
Cevap: B'dir.

Soru 23: x < 0 < y olduğuna göre
3. |x-y|
|y+|x| |
y+ işleminin sonucu aşağıdakilerden hangisidir?
A)-3x B)-3y C) 3 (x + y) D) - 3 E) 3 (1995-ÖSS)
ÇÖZÜM
3 |x - y| ifadesinde (x - y) < 0 olduğundan
3 |x - y| = - 3 (x - y) olur.
Benzer şekilde x<0> |x| = - x olur.
| y + |x| | = |y-x| = y-x
+
3(x-y) = -3(x-y) =3
y-x -(x-y)
Cevap: E'dir...
« Son Düzenleme: Mart 02, 2009, 06:41:05 ÖS Gönderen : mEkansIz_CoCuq »
WeBCaNaVaRi Botu

Bu Site Mükemmel :)

*****

Çevrimİçi Çevrimİçi

Mesajlar: 222.145


View Profile
Re: Mutlak Değer
« Posted on: Kasım 22, 2019, 03:09:00 ÖÖ »

 
      Üye Olunuz.!
Merhaba Ziyaretçi. Öncelikle Sitemize Hoş Geldiniz. Ben WeBCaNaVaRi Botu Olarak, Siteden Daha Fazla Yararlanmanız İçin Üye Olmanızı ŞİDDETLE Öneririm. Unutmayın ki; Üyelik Ücretsizdir. :)

Giriş Yap.  Kayıt Ol.
Anahtar Kelimeler: Mutlak Değer e-book, Mutlak Değer programı, Mutlak Değer oyunları, Mutlak Değer e-kitap, Mutlak Değer download, Mutlak Değer hikayeleri, Mutlak Değer resimleri, Mutlak Değer haberleri, Mutlak Değer yükle, Mutlak Değer videosu, Mutlak Değer şarkı sözleri, Mutlak Değer msn, Mutlak Değer hileleri, Mutlak Değer scripti, Mutlak Değer filmi, Mutlak Değer ödevleri, Mutlak Değer yemek tarifleri, Mutlak Değer driverları, Mutlak Değer smf, Mutlak Değer gsm
Yanıtla #1
« : Haziran 28, 2008, 01:42:45 ÖS »

By.CeZa
*
Üye No : 293
Nerden : İstanbul
Cinsiyet : Bay
Konu Sayısı : 12191
Mesaj Sayısı : 28.686
Karizma = 154


mutlak değermiş normal toplama işlemini zor yapıyorum ben bu ne yaa.. Zuhahaha

İstek & Öneri ve Şikayetlerinizi: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
Adresine İletebiliriniz.


Bayanlara: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
www.kadincaforum.net

4EverRAP: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
www.rapcanavari.net

4EverROCK: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
www.rockcanavari.net

Twilight Saga FAN: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
www.twilightturkiye.com

FlashOyun: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
www.flashoyuncu.net
Yanıtla #2
« : Mart 02, 2009, 06:41:51 ÖS »
Avatar Yok

mEkansIz_qEnc
*
Üye No : 588
Yaş : 29
Nerden : Rize
Cinsiyet : Bay
Konu Sayısı : 3519
Mesaj Sayısı : 17.287
Karizma = 17406


Mat'da Ne Kolay Bu Galiba xD

Diğer Sitelerimizi Ziyaret Ettiniz mi.?

Bayanlara: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
www.kadincaforum.net

4EverRAP: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
www.rapcanavari.net

4EverROCK: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
www.rockcanavari.net

Twilight Saga FAN: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
www.twilightturkiye.com

FlashOyun: WeBCaNaVaRi'na Üye Olmadan Link'leri ve Kod'ları Göremezsiniz.
Link'leri Görebilmek İçin. Üye Ol. veya Giriş Yap.
www.flashoyuncu.net
Sayfa 1
Yukarı Çık :)
Gitmek istediğiniz yer:  


Benzer Konular
Konu Başlığı Başlatan Yanıtlar Görüntü Son Mesaj
Çok Güzel Bir Şiir Okumaya Değer Peygamberimizle Ilgili
İslam
Sahin07 4 4684 Son Mesaj Mart 14, 2012, 04:09:03 ÖS
Gönderen : elze
Değer Yaşamak/ahmet Inam
Felsefe
Asortik Hatun 0 461 Son Mesaj Kasım 28, 2012, 09:54:07 ÖS
Gönderen : Asortik Hatun
Işte Burak'a Biçilen Değer.
Galatasaray
Honey_Face 0 302 Son Mesaj Mayıs 15, 2013, 03:44:16 ÖS
Gönderen : Honey_Face
Yüzde 30 Değer Kaybetti!
Bilim - Teknoloji ve Bilim Adamları
Violin 0 262 Son Mesaj Mayıs 20, 2013, 04:24:35 ÖS
Gönderen : Violin
Mutlak Adalet
Sinema & Tiyatro ve Festivaller.
Honey_Face 0 245 Son Mesaj Şubat 27, 2014, 06:56:47 ÖS
Gönderen : Honey_Face


Theme: WeBCaNaVaRi 2011 Copyright © 2011 Simple Machines SiteMap | Arşiv | Wap | İmode | Konular